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Abstract

In this short note we give a generalization of an identity for Lambert series
by Wrench.

1 Wrench’s identity

The following relation is given by Knuth (attributed to J. R. Wrench, Jr.) [3,
p.644, solution to exercise 5.2.3-27]:
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To verify this identity, write the Lambert sum as

W) =33 and" (2)

n>1k>1

and write the summands in a table (cf. [4]) as shown in figure 1. Then take
sums starting from the diag011al2entries an q”2, taking both the terms to the
right in the same row _, <, an ¢" +kn and the terms below in the same column
Zj>1 (pyj q"2+j". To obtain (1), combine both into a single sum, replacing j
by k in the column sums.
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Figure 1: The double sum in relation (2) written as a table.

2 The generalization

We first derive

Z an 0" Z " la, b+ Z (an 0P b an b)) " F L (3)
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n>1 nq" n>1 E>1

As before, write as a double sum

Z Z Qn bl:fI qk " (4)

n>1k>1

Take sums starting from the diagonal entries a, b7 * q”Q. The terms to the
n—1 n +]n

right give 37, ~1 an b1 g7tk the terms below give D i1 i by i q
Write as a single sum to obtain (3).
Replacing a,, by a, t"/q™ and simplifying gives the desired identity:
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For the special case a,, = 1/t and b, = x/q there is Agarwal’s relation, see [1]
(note the summation starts with n = 0),
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and also, see [2],
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where (2;¢), = (1—2) (1—2¢) (1—2¢%) --- (1—2¢"" ') and (2;¢)o = 1. Writing
identity (5) in a similar way doesn’t seem easily possible.
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