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Abstract-The method of empirical orthogonal functions (EOFs) is used to analyse spatio-temporal 
data obtained from simulations of heterogeneous catalysis. It is found that EOFs are well suited for 
the quantitative determination of transients in the data. The effectivity of the technique is 
demonstrated using synthetical data with an analytically known transient component. 0 I997 Elsevier 
Science Ltd 

1. INTRODUCTION 

The typical problems that arise in the analysis of spatio-temporal data are different from 
those in the analysis of scalar data: long transients are common for such systems, more 
probable if a larger number of ‘characteristic wavelengths’ fit into the system length. For 
some systems, the transient time may be so long that one cannot expect ever to observe 
stationary dynamics [ 11. If the transient time is unknown, it may be difficult or impossible to 
decide whether the examined data are part of the transient or not. 

In a sense, the investigation of spatio-temporal data has experimental character, since 
partial differential equations (PDEs) exhibit potentially an infinite number of degrees of 
freedom. Consequently, techniques which have been developed for ordinary differential 
equations have to be used with caution. The analysis of transients using empirical orthogonal 
functions (EOFs) can be a useful first step. 

The focus of this paper is the analysis of simulations of PDEs describing the heteroge- 
neous catalytic oxidation of carbon monoxide, using EOFs. It turns out that the EOFs allow 
us to quantify the amount of transient behavior effectively. We illustrate the technique using 
synthetic spatio-temporal data with a well-defined superimposed transient. 

2. THE METHOD OF EMPIRICAL ORTHOGONAL FUNCTIONS 

The method of EOFs, also called the method of empirical eigenfunctions, proper 
orthogonal decomposition (POD), principal component analysis, singular spectrum analysis, 
Karhunen-Lo&e expansion or bi-orthogonal decomposition, is a pattern recognition 
algorithm that uses linear correlations in space to find coherent structures, the EOFs 
(empirical eigenfunctions, topos or empirical modes) in spatio-temporal data [2-91. 
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BY a ‘photo’, we mean a vector holding the spatial data samples at a certain time. Let a 
‘movie’ (space-time data) be written as an X X T matrix, either as a column of T photos 
pi or as a row of X columns &, each describing the dynamics at one location: 

A:=(& a; . . . ci,)= (1) 

For data sets with two or more spatial dimensions, the notation need not be changed, photos 
of more dimensions can be represented as row vectors by simply identifying the vector 
components with the locations of the photos in any arbitrary order. For the definition of the 
empirical modes, one first has to define the covariance matrix, which is a measure for the 
linear interdependence of the dynamics at different locations. Each entry ij of the 
covariance matrix (two-point correlation matrix) R is the covariance of location i with 
location i. Subject to the condition that the time average at every location is zero, it may be 
written as 

(2) 

The brackets ( ) denote time averages. 
The EOFs Qi(x) of the movie A are defined as the eigenvectors pi of the symmetric matrix 

R, sorted with respect to the size of the eigenvalues wi (largest first). 
The sequence of scalar products of the photos with one particular mode is called the mode 

amplitude (or chronos) c,(t) of that mode. This is a time series-like data set. For the 
spatio-temporal data obtained from a linear system (e.g. coupled linear oscillators), this 
method finds the normal modes of the system as empirical eigenfunctions [3]. 

The EOFs are often used for the reduction of data since the output of a simulation of 
partial differential equations with many spatial sampling points quickly leads to huge 
amounts of data. The empirical modes may be used to characterise the ‘patterns’ of motion; 
each mode amplitude can then be examined separately with the methods of time series 
analysis to characterize the type of the dynamics. 

In [5] for example, mode amplitudes are used to characterize regular and chaotic vocal 
fold vibrations. An example for a semiconductor laser model is provided in [6]. An 
application to semiconductor transport is given in [7]. In principle, EOFs can be exploited to 
project PDEs on low-dimensional systems of ODES. This is exemplified in [8] for a 
hydrodynamic flow of complex geometry. Examples of data reduction using EOFs are given 
in [.5] and [9]. 

3. DATA FROM A MODEL OF HETEROGENEOUS CATALYSIS 

The system examined is that of catalytic oxidation of CO on a Pt(ll0) single crystal 
surface in a reactor at low pressures (p < 10e3 torr). 
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Table 1. List of the first ten singular values for the data sets of Fig. 1. They are normalized to sum 
up to 100%. Each value quantifies the relative contribution of the corresponding empirical mode 

to the original data 

# (a) Periodic 

I 55.47424 
2 34.27286 
3 6.609278 
4 2.607328 
s 0.623500 
6 0.268399 
7 0.076638 
X 0.033294 
9 0.011695 

I 0 0.005611 

(l-r) Torus (c) Temporal,chaos (d) Weak turbulence 

51.72563 4357567 35.9689 
33.14202 29.31886 27.5575 

7.599817 7.684667 7.82502 
4.024955 3.Y89968 5.80164 
I .905375 3.925190 4.501 I4 
0.755899 2.918001 4.09786 
0.337746 2.849799 2.95492 
0.197319 I .6X)753 2.22570 
0.082795 I .tI42461( 1.61923 
0.053195 0.6S5008 I .05982 

This system is experimentally well examined. Many types of interesting behavior have 
been observed for different parameter values. Depending on the reaction conditions one 
observes, for example, standing or moving waves, spiral waves, concentric elliptic waves and 
turbulence [ll]. 

Based on the Langmuir-Hinshelwood mechanism, realistic models of the CO oxidation 
have been developed [12,13]. In this paper, we analyse simulations of three coupled 
differential equations modelling the coverage of the Pt(llO) surface by oxygen and carbon 
monoxide and an absorption-induced phase transition of the Pt surface (see [ 121 for details). 
In particular, global coupling via the partial pressure of CO in the gas phase is included [13j. 
The equations are solved in one spatial dimension including the diffusion of carbon 
monoxide only. Detailed discussions of the model and parameter values can be found 
elsewhere [12,13]. 

Periodic boundary conditions were used in all simulations. The initial condition is a cosine 
wave in the spatial coordinate. The simulation used a discretization with 1000 spatial points. 
The analysed dimensionless variable u corresponding to the coverage with carbon monoxide 
was recorded at 100 locations and after every 160th timestep. The global data (CO partial 
pressure) were recorded after every 16th timestep. The data sets analysed include the initial 
transient phase. 

Figure 1 shows the time series corresponding to (a) periodic, (h) toroidal oscillations, (c) 
temporal chaos and (d) weak turbulence. The spatio-temporal behavior of the toroidal cast 
is presented in (e). Note the two ‘domains’ around x = 2.5 and x = 65 which strongly 
influence the shape of the spatial modes. The width of these domains is modulated for the 
data sets shown in Fig. lb-d. The empirical modes for the data sets were computed using the 
singular value decomposition [lo]. Table 1, the table of singular values, i.e. the eigenvalues 
o,, shows that a few modes dominate. 

In the first empirical modes (see Fig. 2). the shape of the characteristic patterns of the 
corresponding data can easily be recognized. The higher modes (i.e. those corresponding to 
small singular values) cannot be interpreted as a characteristic pattern found by the EOF. 
Their shapes are rather determined by the orthogonality property for the empirical modes: 
they generally tend to become more oscillatory in the regions of the borders between the 
patterns. 

The ‘x-shaped’ amplitude of the fifth empirical mode (see Fig. 3) looks very different from 
the first four mode amplitudes. Such x-shaped mode amplitudes were found several times 
when a POD was performed on different data sets. In order to rule out that this was an 
artefact of the specific implementation of the POD. the spatio-temporal data were cut into 
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Fig. 2. 

10 20 30 30 50 60 70 SO 90 100 

x Pzl 
rhe first ten empirical modes aA for the data set of Fig. lc. Each mode i> a vector of norm one. 

blocks of equal length in time. The blocks were swapped and the resulting data set was used 
as a test input for the POD. A flaw in the implementation should have been detected if the 
new mode amplitude was of a similar shape as the original one. The result. however, was 
exactly as predicted by the definition of the POD (see Fig. 4): as it is insensitive to a 
permutation of the photos, the POD of any permutation of the input photos should lead to 
the same modes and corresponding amplitudes which are permutated in the same way as the 
photos. 

For data without transients, such x-shaped amplitudes never occurred. This is a strong hint 
that empirical modes with modulated amplitudes should be considered as effects of 
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Fig. 1. The lint ten mode amplitudes c,(r) for the data set of Fig. Ic. Each mode amplitude is a vector of norm one. 

transients in the data. The specific forms of the mode amplitudes are due to the 
orthogonality property of the amplitudes from a POD: even if only a part of the data set is 
used as input for the POD, the mode amplitude describing the transient always keeps its 
x-shaped form. The POD adjusts the form of the modes in a way that the amplitudes 
describing transients always seem to suffer a phase rotation of 180 degrees. If short parts of a 
data set are used, the number of the first x-shaped mode amplitude shifts towards higher 
values. This can be expected because shorter data sets only contain a smaller portion of 
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Fig. 4. Typical ‘x-shaped’ mode amplitude. (a) Fifth mode amplitude for the data set of Fig. lc; the corresponding 
singular value is 3.9%. (b) Mode amplitude of the same data with the first and the second half of the block 

swapped. 

transient behavior. The corresponding singular values give a quantitative estimate of the 
percentage of transient behavior. 

Among the mode amplitudes of the data set of Fig. Id (see Fig. 5) there are also ‘irregular’ 
ones (numbers 4,6 and 9) which seem to suffer a phase rotation. But their form is not due to 
transients; they reflect slow fluctuations of the borders of the stripe patterns in the data. 
Again the corresponding singular values give a measure for the amount of these weak and 
slow modulations. 

This means that the POD can supply valuable information for data sets where it strictly 
speaking cannot be applied. If the transient or turbulent behavior of a system is not too 
strong, the POD produces modes that can be assigned to these instationary parts of the 



191x J. ARNDT et t/l. 

C3b) 

I 

C40) 

‘dt) ‘IIF’ ,,,, I’ ‘fpr “’ 

c7(t 

4 

c9(t 

I I 

ClOb) 

1 1 I I I I 1 I 
0 200 400 600 800 1000 1200 

t [&I 

Fig. 5. The first ten mode amplitudes cr(t) for the data set of Fig. Id. 

dynamics. These modes and their amplitudes indicate where and when that behavior occurs: 
the singular values give a measure for its strength. 

4. SYNTHETICAL DATA 

The applicability of EOFs to the detection of transients is now corroborated by means of 
artificially generated data. These data exhibit spatial and temporal modulations with three 
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Fig. 6. The first live empirical modes QA(x) for the synthetical data set with X = 25, r = 200, A, = 2. R, = 1.61. 
w =0.61,A,=l.R,=1.w,=1,A,=0.1,R,=2~/X,w,=O.S.r=100.A,,=O.01. < 

independent frequencies, white noise, and a relatively weak exponential decay which mimics 
a transient component. 

The synthetical data set is defined by 

c$(x,t) = A, cos(R,x) COS(WJ) + A, sin(R,x) sin(w,t) 

+ A, sin(Q,x) cos(w,t) exp( - t/r) + A,e(x,t), 

forxE[O,l,..., X-l],tE[O,l,..., T-l], (3) 

where r(x,t) is white noise with unity variance. 
These data were examined by the method of the EOFs. The resulting modes (see Fig. 6) 

and amplitudes (see Fig. 7) can be interpreted easily: the empirical modes correspond to the 
different spatial contributions in the trigonometric terms, and the mode amplitudes 
correspond to the time-dependent terms. Thus c,(t), c2(f) and cj(r) precisely map the 
cos(w,t), COS(W,I) and cos(w,t) terms, respectively. The singular values coincide (within the 
error bounds) with the variance of the individual terms (64.1% for ‘cos cos’ and 31.6% for 
‘sin sin’). In particular, the third mode amplitude (1.61%), which represents the weak 
exponential modulation, describes indeed the transient component. The higher-order 
singular values are below 1% and reflect the noise contribution. 

5. CONCLUSIONS 

This work is devoted to the analysis of spatio-temporal data with empirical orthogonal 
functions. For the simulation of heterogeneous catalysis, complex regimes have been 
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Fig. 7. The tirst five mode amplitudes c~(I) for the synthetical data set. 

studied. Toroidal dynamics is covered by the first modes. In chaotic data, transients and low 
frequency modulations occur. These appear as x-shaped higher-order modes. 

In order to verify the capability of empirical orthogonal functions to detect weak 
transients, we have generated synthetical data. These simulations show that even the 
quantitative amount of the transient can be estimated from the corresponding singular value. 

In summary, we emphasize that, in addition to the previously known features of empirical 
orthogonal functions (such as data reduction, filtering and Galerkin projection), another 
important aspect has been discovered: higher-order modes can visualize (and even quantify) 
weak transients and modulations of spatiotemporal data. 
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