#
# Number of irreducible normal degree-n polynomials over GF(2):
# A line
# n:  N  p1^e1.p2^e2. ...
# says there are N normal polynomials of degree n,
# the third column gives the factorization of N.
#.
# Generated by Joerg Arndt, 2003-December-23
#

1:  1  1
2:  1  1
3:  1  1
4:  2  2
5:  3  3
6:  4  2^2
7:  7  7
8:  16  2^4
9:  21  3.7
10:  48  2^4.3
11:  93  3.31
12:  128  2^7
13:  315  3^2.5.7
14:  448  2^6.7
15:  675  3^3.5^2
16:  2048  2^11
17:  3825  3^2.5^2.17
18:  5376  2^8.3.7
19:  13797  3^3.7.73
20:  24576  2^13.3
21:  27783  3^4.7^3
22:  95232  2^10.3.31
23:  182183  23.89^2
24:  262144  2^18
25:  629145  3^2.5.11.31.41
26:  1290240  2^12.3^2.5.7
27:  1835001  3^3.7^2.19.73
28:  3670016  2^19.7
29:  9256395  3.5.43.113.127
30:  11059200  2^14.3^3.5^2
31:  28629151  31^5
32:  67108864  2^26
33:  97327197  3^3.11^2.31^3
34:  250675200  2^16.3^2.5^2.17
35:  352149525  3^5.5^2.7^3.13^2
36:  704643072  2^25.3.7
37:  1857283155  3^3.5.7.13.19.73.109
38:  3616800768  2^18.3^3.7.73
39:  5282242875  3^6.5^3.7^3.13^2
40:  12884901888  2^32.3
41:  26817305625  3^2.5^4.11^2.31^2.41
42:  29132587008  2^20.3^4.7^3
43:  102261424509  3^3.43^2.127^3
44:  199715979264  2^31.3.31
45:  237700929375  3^8.5^4.7^3.13^2
46:  764130885632  2^22.23.89^2
47:  1497206965967  47.178481^2
48:  2199023255552  2^41
49:  4398042316801  7^4.127^2.337^2
50:  10555301560320  2^24.3^2.5.11.31.41
51:  16173058640625  3^6.5^6.17^5
52:  43293270343680  2^37.3^2.5.7
53:  84973577874915  3.5.157.1613.2731.8191
54:  123144832548864  2^26.3^3.7^2.19.73
55:  306763159044375  3^4.5^4.11^2.31^3.41^2
56:  492581209243648  2^46.7
57:  948115386938853  3^9.7^3.19^2.73^3
58:  2484744612741120  2^28.3.5.43.113.127
59:  4885260612740877  3.233.1103.2089.3033169
60:  5937362789990400  2^43.3^3.5^2
61:  18900352534538475  3^2.5^2.7.11.13.31.41.151.331.1321
62:  30740316814311424  2^30.31^5
63:  36478899699325587  3^17.7^10
64:  144115188075855872  2^57
65:  265734188480840625  3^11.5^5.7^5.13^4
66:  418017128126349312  2^32.3^3.11^2.31^3
67:  1101298153654301589  3^2.7.23.89.683.20857.599479
68:  2153283571836518400  2^49.3^2.5^2.17
69:  3204995701868251047  3^2.23^3.89^4.683^2
70:  6049882772707737600  2^34.3^5.5^2.7^3.13^2
71:  16628050995051997559  31^2.71.127^2.122921^2
72:  24211351596743786496  2^60.3.7
73:  63686054030288904697  7^8.73^7
74:  127631526562187182080  2^36.3^3.5.7.13.19.73.109
75:  155643957820139765625  3^6.5^7.11^3.31^3.41^3
76:  497089312470645866496  2^55.3^3.7.73
77:  750551898101045527179  3^5.7^3.11^2.31^3.151^2.331^2
78:  1451971865449857024000  2^38.3^6.5^3.7^3.13^2
79:  3825714619019718760111  7^2.79.8191^2.121369^2
80:  7083549724304467820544  2^71.3
81:  11018813093099316095661  3^6.7^3.19^2.73^2.87211.262657
82:  29485939360310231040000  2^40.3^2.5^4.11^2.31^2.41
83:  58261485282632731311141  3.13367.164511353.8831418697
84:  64063236324984059068416  2^61.3^4.7^3
85:  205151235916152919921875  3^11.5^10.17^9
86:  449750501282332526247936  2^42.3^3.43^2.127^3
87:  666993548195216740924875  3^3.5^3.29^2.43^3.113^3.127^3
88:  1756720331627508019494912  2^74.3.31
89:  3463799415962753191708649  23^8.89^7
90:  4181678972495588229120000  2^44.3^8.5^4.7^3.13^2
91:  10397574249976499743828125  3^14.5^7.7^8.13^6
92:  26885465404645017936461824  2^67.23.89^2
93:  32814234052783370493358239  3^6.11^6.31^11
94:  105356573969148313849561088  2^46.47.178481^2
95:  195463471086768749316972975  3^10.5^2.7^3.13^2.19^2.37^2.73^3.109^2
96:  309485009821345068724781056  2^88
97:  816785180559420357150417825  3^4.5^2.7^2.13^2.17^2.97.241^2.257^2.673^2
98:  1237938858694041032464531456  2^48.7^4.127^2.337^2
99:  2356422982103367223539335073  3^8.7^3.11^4.31^5.151^2.331^2
100:  5942106521730045875941539840  2^73.3^2.5.11.31.41
101:  12550996041863657440561417875  3.5^3.11.31.41.251.601.1801.4051.8101.268501
102:  18209245216839982645248000000  2^50.3^6.5^6.17^5
103:  49229149523426340799875586903  7^2.103.2143^2.11119^2.131071^2
104:  97487778093723696648306032640  2^88.3^2.5.7
105:  88431368996050130321258203125  3^19.5^8.7^9.13^6
106:  382686973653805017365049507840  2^52.3.5.157.1613.2731.8191
107:  758220919762679268184943973309  3.6361.69431.20394401.28059810762433
108:  1109190043959332075107503833088  2^79.3^3.7^2.19.73
109:  2977234437103299333346360030875  3^9.5^3.7^3.13^3.19^3.37^3.73^3.109^2
110:  5526153795052973799285719040000  2^54.3^4.5^4.11^2.31^3.41^2
111:  8770771720115125063101439009875  3^9.5^3.7^3.13^3.19^3.37^2.73^3.109^3
112:  17747108403195211620953844875264  2^101.7
113:  45949529036845801818936215060625  3^4.5^4.29^4.43^4.113^3.127^4
114:  68318913653152832016114052497408  2^56.3^9.7^3.19^2.73^3
115:  169148722632827095983079582881525  3^3.5^2.23^3.89^4.397^2.683^2.2113^2
116:  358089437185656173427339967856640  2^85.3.5.43.113.127
117:  523071547611636520850242271484375  3^19.5^9.7^10.13^8
118:  1408080504009444775733179069759488  2^58.3.233.1103.2089.3033169
119:  2121333545554022542681348610484375  3^10.5^6.7^5.13^4.17^5.241^4
120:  3422656620616219384041098654515200  2^102.3^3.5^2
121:  10974627450994067487575821786760649  3^2.11.23.31^2.89.683.881.2971.3191.201961.48912491
122:  21790622881719932323785009109401600  2^60.3^2.5^2.7.11.13.31.41.151.331.1321
123:  32420009509742643116175705322265625  3^6.5^12.11^6.31^6.41^5
124:  70882344627294167965017074353307648  2^91.31^5
125:  159507207376117877360928667629130875  3^3.5^3.11^2.31^2.41^2.101.251.601.1801.4051.8101.268501
126:  168229231710994854080263558841499648  2^62.3^17.7^10
127:  581652040856250348581103942808504447  127^17
128:  1329227995784915872903807060280344576  2^120
129:  1977299359668338532910575633064919421  3^9.43^8.127^9
130:  4901930566540963796139394675507200000  2^64.3^11.5^5.7^5.13^4