// output of ./demo/comb/ordered-tree-branching-seq-demo.cc: // Description: //% Branching sequences for ordered rooted trees: //% words [s(0), s(1), ..., s(n)] with s(n)=0, sum(j=0..n, s(j)) = n, //% sum(j=0..k, s(j)-1 ) >= 0 for k<n-1, and sum(j=0..n-1, s(j)-1 ) = 0. //% Lexicographic order. //% Cf. OEIS sequence A000108. arg 1: 5 == n [Number of non-root nodes] default=5 1: [ 1 1 1 1 1 . ] [ . 1 2 3 4 5 ] 2: [ 1 1 1 2 . . ] [ . 1 2 3 4 4 ] 3: [ 1 1 2 . 1 . ] [ . 1 2 3 3 4 ] 4: [ 1 1 2 1 . . ] [ . 1 2 3 4 3 ] 5: [ 1 1 3 . . . ] [ . 1 2 3 3 3 ] 6: [ 1 2 . 1 1 . ] [ . 1 2 2 3 4 ] 7: [ 1 2 . 2 . . ] [ . 1 2 2 3 3 ] 8: [ 1 2 1 . 1 . ] [ . 1 2 3 2 3 ] 9: [ 1 2 1 1 . . ] [ . 1 2 3 4 2 ] 10: [ 1 2 2 . . . ] [ . 1 2 3 3 2 ] 11: [ 1 3 . . 1 . ] [ . 1 2 2 2 3 ] 12: [ 1 3 . 1 . . ] [ . 1 2 2 3 2 ] 13: [ 1 3 1 . . . ] [ . 1 2 3 2 2 ] 14: [ 1 4 . . . . ] [ . 1 2 2 2 2 ] 15: [ 2 . 1 1 1 . ] [ . 1 1 2 3 4 ] 16: [ 2 . 1 2 . . ] [ . 1 1 2 3 3 ] 17: [ 2 . 2 . 1 . ] [ . 1 1 2 2 3 ] 18: [ 2 . 2 1 . . ] [ . 1 1 2 3 2 ] 19: [ 2 . 3 . . . ] [ . 1 1 2 2 2 ] 20: [ 2 1 . 1 1 . ] [ . 1 2 1 2 3 ] 21: [ 2 1 . 2 . . ] [ . 1 2 1 2 2 ] 22: [ 2 1 1 . 1 . ] [ . 1 2 3 1 2 ] 23: [ 2 1 1 1 . . ] [ . 1 2 3 4 1 ] 24: [ 2 1 2 . . . ] [ . 1 2 3 3 1 ] 25: [ 2 2 . . 1 . ] [ . 1 2 2 1 2 ] 26: [ 2 2 . 1 . . ] [ . 1 2 2 3 1 ] 27: [ 2 2 1 . . . ] [ . 1 2 3 2 1 ] 28: [ 2 3 . . . . ] [ . 1 2 2 2 1 ] 29: [ 3 . . 1 1 . ] [ . 1 1 1 2 3 ] 30: [ 3 . . 2 . . ] [ . 1 1 1 2 2 ] 31: [ 3 . 1 . 1 . ] [ . 1 1 2 1 2 ] 32: [ 3 . 1 1 . . ] [ . 1 1 2 3 1 ] 33: [ 3 . 2 . . . ] [ . 1 1 2 2 1 ] 34: [ 3 1 . . 1 . ] [ . 1 2 1 1 2 ] 35: [ 3 1 . 1 . . ] [ . 1 2 1 2 1 ] 36: [ 3 1 1 . . . ] [ . 1 2 3 1 1 ] 37: [ 3 2 . . . . ] [ . 1 2 2 1 1 ] 38: [ 4 . . . 1 . ] [ . 1 1 1 1 2 ] 39: [ 4 . . 1 . . ] [ . 1 1 1 2 1 ] 40: [ 4 . 1 . . . ] [ . 1 1 2 1 1 ] 41: [ 4 1 . . . . ] [ . 1 2 1 1 1 ] 42: [ 5 . . . . . ] [ . 1 1 1 1 1 ] ct=42