

How to compute π to 1012 digits

A crash course in high precision arithmetics

Jörg Arndt <arndt@jjj.de>

1

The radix-2 DIF FFT algorithm

Splitting of the Fourier sum into a left and right half leads to the deci-
mation in frequency (DIF) FFT algorithm, also called Sande-Tukey FFT
algorithm.
For even values of n the k-th element of the Fourier transform is

F
[
a
]
k

=
n−1∑
x=0

ax zx k =

n/2−1∑
x=0

ax zx k +
n∑

x=n/2

ax zx k (1a)

=

n/2−1∑
x=0

ax zx k +

n/2−1∑
x=0

ax+n/2 z(x+n/2) k (1b)

=

n/2−1∑
x=0

(a(left)
x + zk n/2 a(right)

x) zx k (1c)

where z = eσ i 2 π/n, σ = ±1 is the sign of the transform and k ∈
{0, 1, . . . , n− 1}.
Here one has to distinguish the cases k even or odd, therefore we rewrite
k ∈ {0, 1, 2, . . . , n − 1} as k = 2 j + δ where j ∈ {0, 2, . . . , n

2 − 1} and
δ ∈ {0, 1}:

n−1∑
x=0

ax zx (2 j+δ) =

n/2−1∑
x=0

(a(left)
x + z(2 j+δ) n/2 a(right)

x) zx (2 j+δ) (2a)

=

n/2−1∑
x=0

(a(left)
x + a(right)

x) z2 x j for δ = 0

n/2−1∑
x=0

zx(a(left)
x − a(right)

x) z2 x j for δ = 1

(2b)

z(2 j+δ) n/2 = e±π i δ is equal to plus or minus one for δ = 0 or δ = 1 corre-
sponding to k even or odd. The last two equations are, more compactly
written, the key to the radix-2 DIF FFT step:

F
[
a
](even) n/2

= F
[
a(left) + a(right)] (3a)

F
[
a
](odd) n/2

= F
[
S1/2

(
a(left) − a(right)

)]
(3b)

2

The radix-2 DIT FFT algorithm

The following observation is the key to the (radix-2) decimation in time
(DIT) FFT algorithm, also called Cooley-Tukey FFT algorithm:
For n even the k-th element of the Fourier transform is

F
[
a
]
k

=
n−1∑
x=0

ax zx k =

n/2−1∑
x=0

a2 x z2 x k +

n/2−1∑
x=0

a2 x+1 z(2 x+1) k (1a)

=

n/2−1∑
x=0

a2 x z2 x k + zk

n/2−1∑
x=0

a2 x+1 z2 x k (1b)

where z = eσ i 2 π/n, σ = ±1 is the sign of the transform and k ∈
{0, 1, . . . , n− 1}.
The identity tells us how to compute the k-th element of the length-n
Fourier transform from the length-n/2 Fourier transforms of the even and
odd indexed subsequences.

To actually rewrite the length-n FT in terms of length-n/2 FTs one has to
distinguish the cases 0 ≤ k < n/2 and n/2 ≤ k < n. In the expressions we
rewrite k ∈ {0, 1, 2, . . . , n− 1} as k = j + δ n

2 where j ∈ {0, 1, . . . , n/2− 1}
and δ ∈ {0, 1}.

n−1∑
x=0

ax zx (j+δ n
2) =

n/2−1∑
x=0

a(even)
x z2 x (j+δ n

2) + zj+δ n
2

n/2−1∑
x=0

a(odd)
x z2 x (j+δ n

2) (2a)

=

n/2−1∑
x=0

a(even)
x z2 x j + zj

n/2−1∑
x=0

a(odd)
x z2 x j for δ = 0

n/2−1∑
x=0

a(even)
x z2 x j − zj

n/2−1∑
x=0

a(odd)
x z2 x j for δ = 1

(2b)

Observing that z2 is just the root of unity that appears in a length-n/2
transform one can rewrite the last two equations to obtain the radix-2 DIT
FFT step:

F
[
a
](left) n/2

= F
[
a(even)]+ S1/2F

[
a(odd)] (3a)

F
[
a
](right) n/2

= F
[
a(even)]− S1/2F

[
a(odd)] (3b)

3

The radix-4 DIF FFT algorithm

The radix-2 DIF step in the new notation:

F
[
a
](0%2) n/2

= F
[
S0/2

(
a(0/2) + a(1/2)

)]
F
[
a
](1%2) n/2

= F
[
S1/2

(
a(0/2) − a(1/2)

)]
The radix-4 DIF FFT step, applicable for n divisible by 4, is

F
[
a
](0%4) n/4

= F
[
S0/4

(
a(0/4) + a(1/4) + a(2/4) + a(3/4)

)]
F
[
a
](1%4) n/4

= F
[
S1/4

(
a(0/4) + i σ a(1/4) − a(2/4) − i σ a(3/4)

)]
F
[
a
](2%4) n/4

= F
[
S2/4

(
a(0/4) − a(1/4) + a(2/4) − a(3/4)

)]
F
[
a
](3%4) n/4

= F
[
S3/4

(
a(0/4) − i σ a(1/4) − a(2/4) + i σ a(3/4)

)]
The radix-2 DIT step in the new notation:

F
[
a
](0/2) n/2

= S0/2F
[
a(0%2)]+ S1/2F

[
a(1%2)]

F
[
a
](1/2) n/2

= S0/2F
[
a(0%2)]− S1/2F

[
a(1%2)]

Note that S0/2 = S0 is the identity operator.

The radix-4 DIT FFT step:

F
[
a
](0/4) n/4

= +S0/4F
[
a(0%4)]+ S1/4F

[
a(1%4)]+ S2/4F

[
a(2%4)]+ S3/4F

[
a(3%4)]

F
[
a
](1/4) n/4

= +S0/4F
[
a(0%4)]+ iσS1/4F

[
a(1%4)]− S2/4F

[
a(2%4)]− iσS3/4F

[
a(3%4)]

F
[
a
](2/4) n/4

= +S0/4F
[
a(0%4)]− S1/4F

[
a(1%4)]+ S2/4F

[
a(2%4)]− S3/4F

[
a(3%4)]

F
[
a
](3/4) n/4

= +S0/4F
[
a(0%4)]− iσS1/4F

[
a(1%4)]− S2/4F

[
a(2%4)]+ iσS3/4F

[
a(3%4)]

In contrast to the radix-2 step that happens to be identical for forward and
backward transform the sign of the transform σ = ±1 appears here.

4

Split radix FFT algorithms

The idea underlying the split radix FFT is to use both radix-2 and radix-4
decompositions at the same time.

From the radix-2 (DIF) decomposition we use the first, the one for the
even indices. For the odd indices we use the radix-4 splitting: The radix-4
decimation in frequency (DIF) step for the split radix FFT:

F
[
a
](0%2) n/2

= F
[(

a(0/2) + a(1/2)
)]

F
[
a
](1%4) n/4

= F
[
S1/4

((
a(0/4) − a(2/4)

)
+ i σ

(
a(1/4) − a(3/4)

))]
F
[
a
](3%4) n/4

= F
[
S3/4

((
a(0/4) − a(2/4)

)
− i σ

(
a(1/4) − a(3/4)

))]
Now we have expressed the length-N = 2n FFT as one length-N/2 and two
length-N/4 FFTs. Note that S3/4 = S−1/4 which means a saving in the
trigonometric computations. The nice feature is that the operation count
of the split radix FFT is actually lower than that of the radix-4 FFT. Using
the introduced notation it is almost trivial to write down the DIT version
of the algorithm:

The radix-4 decimation in time (DIT) step for the split radix FFT:

F
[
a
](0/2) n/2

=
(
F
[
a(0%2)]+ S1/2F

[
a(1%2)])

F
[
a
](1/4) n/4

=
(
F
[
a(0%4)]− S2/4F

[
a(2%4)])+ iσS1/4

(
F
[
a(1%4)]− S2/4F

[
a(3%4)])

F
[
a
](3/4) n/4

=
(
F
[
a(0%4)]− S2/4F

[
a(2%4)])− iσS1/4

(
F
[
a(1%4)]− S2/4F

[
a(3%4)])

5

Radix-
√

n FFT algorithms

The matrix Fourier algorithm (MFA) for the FFT:

1. Apply a (length R) FFT on each column.

2. Multiply each matrix element (index r, c) by exp(σ 2 π i r c/n)

3. Apply a (length C) FFT on each row.

4. Transpose the matrix.

Note the elegance!

MFA = ‘four step FFT ’

A trivial modification is obtained if the steps are executed in reversed order.

The transposed matrix Fourier algorithm (TMFA) for the FFT:

1. Transpose the matrix.

2. Apply a (length C) FFT on each row of the transposed matrix.

3. Multiply each matrix element (index r, c) by exp(σ 2 π i r c/n).

4. Apply a (length R) FFT on each column of the transposed matrix.

6

Cyclic convolution

The cyclic convolution (or circular convolution) of two length-n sequences
a = [a0, a1, . . . , an−1] and b = [b0, b1, . . . , bn−1] is defined as the length-n
sequence h with elements hτ as:

h = a ~ b (1a)

hτ :=
∑

x+y≡τ (mod n)

ax by (1b)

The last equation may be rewritten as

hτ :=
n−1∑
x=0

ax b(τ−x) mod n (2)

That is, indices τ − x wrap around, it is a cyclic convolution.

Pseudo code to compute the cyclic convolution of a[] with b[] using the
definition, the result is returned in c[]:

procedure convolution(a[],b[],c[],n)
{

for tau:=0 to n-1
{

s := 0
for x:=0 to n-1
{

tx := tau - x

if tx<0 then tx := tx + n // modulo reduction

s := s + a[x] * b[tx]
}
c[tau] := s

}
}

For length-n sequences this procedure involves proportional n2 operations,
therefore it is slow for large values of n. The Fourier transform provides
us with a more efficient way to compute convolutions that only uses pro-
portional n log(n) operations.

7

Fast computation of convolutions

First we have to state the convolution property of the Fourier transform:

F
[
a ~ b

]
= F

[
a
]
F
[
b
]

(1)

That is, convolution in original space is element-wise multiplication in
Fourier space. The statement can be motivated as follows:

F
[
a
]
k
F
[
b
]
k

=
∑

x

ax zk x
∑

y

by zk y (2a)

with y := τ − x (2b)

=
∑

x

ax zk x
∑
τ−x

bτ−x zk (τ−x) (2c)

=
∑

x

∑
τ−x

ax zk xbτ−x zk (τ−x) (2d)

=
∑

τ

(∑
x

ax bτ−x

)
zk τ (2e)

=

(
F
[∑

x

ax bτ−x

])
k

(2f)

=
(
F
[
a ~ b

])
k

(2g)

Rewriting relation 1 as

a ~ b = F−1[F[a]F[b]] (3)

tells us how to proceed.

8

Acyclic (linear) convolution

In the definition of the cyclic convolution one can distinguish between
those summands where the x + y ‘wrapped around’ (i.e. x + y = n + τ)
and those where simply x + y = τ holds. These are denoted by h(1) and
h(0) respectively. We have

h = h(0) + h(1) where (1a)

h(0) =
∑
x≤τ

ax bτ−x (1b)

h(1) =
∑
x>τ

ax bn+τ−x (1c)

There is a simple way to separate h(0) and h(1) as the left and right half of
a length-2 n sequence. This is just what the acyclic convolution (or linear
convolution) does: Acyclic convolution of two (length-n) sequences a and b
can be defined as that length-2 n sequence h which is the cyclic convolution
of the zero padded sequences A and B:

A := [a0, a1, a2, . . . , an−1, 0, 0, . . . , 0] (2)

Same for B. Then the acyclic convolution is defined as

h = a ~ac b (3a)

hτ :=
2 n−1∑
x=0

Ax Bτ−x τ = 0, 1, 2, . . . , 2 n− 1 (3b)

As an illustration consider the convolution of the sequence [1, 1, 1, 1]
with itself: its linear self convolution is the length-8 sequence [h0][h1] =
[1, 2, 3, 4][3, 2, 1, 0], its cyclic self convolution is [h0 + h1] = [4, 4, 4, 4].

9

Convolutions: semi-symbolic tables
A convenient way to illustrate the cyclic convolution of two sequences is
the following semi-symbolical table:

+-- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
0: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0
2: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1
3: 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2

4: 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3
5: 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4
6: 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5
7: 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6

8: 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9: 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8

10: 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9
11: 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10

12: 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11
13: 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12
14: 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13
15: 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

The entries denote where in the convolution the products of the input
elements can be found:

+-- 0 1 2 3 ...

|

0: 0 1 2 4 ...

1: 1 3 5 <--= h[5] contains a[2]*b[1]

2: 4 8 9 <--= h[9] contains a[2]*b[b]

3: ...

Acyclic convolution (where there are 32 buckets 0..31) looks like:

+-- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
0: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
3: 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

4: 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
5: 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
6: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
7: 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

8: 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
9: 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

10: 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
11: 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

12: 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
13: 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
14: 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
15: 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

10

Number theoretic transforms (NTTs)

How to make a number theoretic transform out of your FFT:
‘Replace exp(± 2 π i/n) by a primitive n-th root of unity, done.’

We want to implement FFTs in Z/mZ (the ring of integers modulo some
integer m) instead of C, the (field of the) complex numbers. These FFTs
are called number theoretic transforms (NTTs), mod m FFTs or (if m is a
prime) prime modulus transforms.

There is a restriction for the choice of m: For a length n NTT we need a
primitive n-th root of unity. A number r is called an n-th root of unity if
rn = 1. It is called a primitive n-th root if rk 6= 1 ∀ k < n.

In C matters are simple: e± 2 π i/n is a primitive n-th root of unity for
arbitrary n. e2 π i/21 is a 21-th root of unity. r = e2 π i/3 is also 21-th root of
unity but not a primitive root, because r3 = 1. A primitive n-th root of 1
in Z/mZ is also called an element of order n. The ‘cyclic’ property of the
elements r of order n lies in the heart of all FFT algorithms: rn+k = rk.

In Z/mZ things are not that simple: for a given modulus m primitive n-th
roots of unity do not exist for arbitrary n. They exist for some maximal
order R only. Roots of unity of an order different from R are available only
for the divisors di of R: rR/di is a di-th root of unity because (rR/di)di =
rR = 1.

Therefore n must divide R, the first condition for NTTs:

n\R ⇐⇒ ∃ n
√

1 (1)

The operations needed in FFTs are addition, subtraction and multiplica-
tion. Division is not needed, except for division by n for the final normal-
ization after transform and back-transform. Division by n is multiplication
by the inverse of n. Hence n must be invertible in Z/mZ: n must be co-
prime to m (i.e. gcd(n, m) = 1), the second condition for NTTs:

n ⊥ m ⇐⇒ ∃n−1 in Z/mZ (2)

11

Prime modulus

If the modulus is a prime p then Z/pZ is the field Fp = GF (p): All elements
except 0 have inverses and ‘division is possible’ in Z/pZ. Thereby the
second condition is trivially fulfilled for all FFT lengths n < p: a prime p
is coprime to all integers n < p.

Roots of unity are available for the maximal order R = p − 1 and its
divisors: Therefore the first condition on n for a length-n mod p FFT
being possible is that n divides p − 1. This restricts the choice for p to
primes of the form p = v n+1: For length-n = 2k FFTs one will use primes
like p = 3 ·5 ·227 +1 (31 bits), p = 13 ·228 +1 (32 bits), p = 3 ·29 ·256 +1 (63
bits) or p = 27 ·259 +1 (64 bits). Primes of that form are not ‘exceptional’.
The elements of maximal order in Z/pZ are called primitive elements ,
generators or primitive roots modulo p. If r is a generator, then every
element in Fp different from 0 is equal to some power re (1 ≤ e < p) of r
and its order is R/e. To test whether r is a primitive n-th root of unity
in Fp one does not need to check rk 6= 1 for all k < n. It suffices to do
the check for exponents k that are prime factors of n. This is because the
order of any element divides the maximal order.

To find a primitive root in Fp proceed as indicated by the following pseudo
code:

function primroot(p)
{

if p==2 then return 1

f[] := distinct_prime_factors(p-1)

for r:=2 to p-1
{

x := TRUE

foreach q in f[]
{

if r**((p-1)/q)==1 then x:=FALSE
}

if x==TRUE then return r
}

error("no primitive root found") // p cannot be prime !
}

The algorithm is a simple search and might seem ineffective. In practice
the root is found after only several tries.

An element of order n in Fp is returned by this function:

function element_of_order(n,p)
{

R := p-1 // maxorder
if (R/n)*n != R then error("order n must divide maxorder p-1")
r := primroot(p)
x := r**(R/n)
return x

}

12

Multiplication and polynomial products

A number written in radix r as

aP aP−1 . . . a2 a1 a0 . a−1 a−2 . . . a−p+1 a−p (1)

denotes a quantity of
P∑

i=−p

ai · ri = aP · rP + aP−1 · rP−1 + · · ·+ a−p · r−p. (2)

That means, the digits can be considered as coefficients of a polynomial
in r. For example, with decimal numbers one has r = 10 and 123.4 =
1 · 102 + 2 · 101 + 3 · 100 + 4 · 10−1. The product of two numbers is almost
the polynomial product

2N−2∑
k=0

ckr
k :=

N−1∑
i=0

air
i ·

N−1∑
j=0

bjr
j (3)

The ck are found by comparing coefficients. One easily checks that the ck

must satisfy the convolution equation.

As the ck can be greater than ‘nine’ (that is, r − 1), the result has to be
‘fixed’ using carry operations: Go from right to left, replace ck by ck%r
and add (ck − ck%r)/r to its left neighbor.

An example: usually one would multiply the numbers 82 and 34 as follows:

82 × 34

3 32 8
2 24 6

= 2 7 8 8

We just said that the carries can be delayed to the end of the computation:

82 × 34

32 8
24 6

24 38 8

= 2 2 7 3 8 8

. . . which is really polynomial multiplication (which in turn is a convolution
of the coefficients):

(8 x + 2) × (3 x + 4)

32 x 8
24 x2 6 x

= 24 x2 +38 x +8

13

Multiplication via FFTs

Convolution can be done efficiently using the Fast Fourier Transform
(FFT): Convolution is a simple (element-wise) multiplication in Fourier
space. The FFT itself takes N · log N operations. Instead of the direct
convolution (∼ N 2) one proceeds like this:

• compute the FFTs of multiplicand and multiplicator

• multiply the transformed sequences elementwise

• compute inverse transform of the product

To understand why this actually works note that (1) the multiplication of
two polynomials can be achieved by the (more complicated) scheme:

• evaluate both polynomials at sufficiently many points (at least one
more point than the degree of the product polynomial c: deg c =
deg a + deg b)

• element-wise multiply the values found

• find the polynomial corresponding to those (product-)values

and (2) that the FFT is an algorithm for the parallel evaluation of a given
polynomial at many points, namely the roots of unity. (3) the inverse FFT
is an algorithm to find (the coefficients of) a polynomial whose values are
given at the roots of unity.

14

FFT multiplication: example

Relaunching our example we use the fourth roots of unity ±1 and ±i:

a = (8 x + 2) × b = (3 x + 4) c = a b

+1 +10 +7 +70
+i +8i + 2 +3i + 4 +38i− 16
−1 −6 +1 −6
−i −8i + 2 −3i + 4 −38i− 16

c = (24 x2 + 38 x + 8)

This table has to be read like this: first the given polynomials a and b
are evaluated at the points given in the left column, thereby the columns
below a and b are filled. Then the values are multiplied to fill the column
below c, giving the values of c at the points. Finally, the actual polynomial
c is found from those values, resulting in the lower right entry. You may
find it instructive to verify that a 4-point FFT really evaluates a, b by
transforming the sequences 0, 0, 8, 2 and 0, 0, 3, 4 by hand. The backward
transform of 70, 38i − 16, −6, −38i − 16 should produce the final result
given for c.

The operation count is dominated by that of the FFTs (the elementwise
multiplication is of course ∼ N), so the whole fast convolution algorithm
takes ∼ N · log N operations. The following carry operation is also ∼ N
and can therefore be neglected when counting operations.

15

Radix and precision with FFT multiplication

Restrictions are due to the fact that the components of the convolution
must be representable as integer numbers with the data type used for the
FFTs: The cumulative sums have to be represented precisely enough to
distinguish every (integer) quantity from the next bigger (or smaller) value.
The highest possible value for a will appear in the middle of the product
and when multiplicand and multiplier consist of ‘nines’ (that is R−1) only.
For radix R and a precision of N LIMBs Let the maximal possible value be
C, then

C = N (R− 1)2 (1)

The number of bits to represent C exactly is the integer greater or equal
to

log2(N (R− 1)2) = log2 N + 2 log2(R− 1) (2)

Due to numerical errors there must be a few more bits for safety. If com-
putations are made using double-precision floating point numbers (C-type
double) one typically has a mantissa of 53 bits. then we need to have

M ≥ log2 N + 2 log2(R− 1) + S (3)

where M :=mantissa-bits and S :=safety-bits. Using log2(R−1) < log2(R):

Nmax(R) = 2M−S−2 log2(R) (4)

Radix R max # LIMBs max # hex digits max # bits

210 = 1024 1048, 576 k 2621, 440 k 10240 M
211 = 2048 262, 144 k 720, 896 k 2816 M
212 = 4096 65, 536 k 196, 608 k 768 M
213 = 8192 16384 k 53, 248 k 208 M
214 = 16384 4096 k 14, 336 k 56 M
215 = 32768 1024 k 3840 k 15 M
216 = 65536 256 k 1024 k 4 M

For decimal numbers:

Radix R max # LIMBs max # digits max # bits

102 110 G 220 G 730 G
103 1100 M 3300 M 11 G
104 11 M 44 M 146 M

105 110 k 550 k 1826 k
106 1 k 6, 597 22 k
107 11 77 255

Do the sum of digits test!

16

Division: Inversion

The ordinary division algorithm is far too expensive for numbers of extreme
precision. Instead one replaces the division a

b by the multiplication of a
with the inverse of b. The inverse of b is computed by finding a starting
approximation x0 ≈ 1

b and then iterating

xk+1 = xk + xk (1− b xk) (1)

until the desired precision is reached. The convergence is quadratic (second
order), which means that the number of correct digits is doubled with each
step: if xk = 1

b(1 + e) then xk+1 = 1
b

(
1− e2

)
.

Moreover, each only requires computations with twice the number of digits
that were correct at its beginning. Still better: the multiplication xk(. . .)
needs only to be done with half of the current precision as it computes the
correcting digits (which alter only the less significant half of the digits).
Thus, at each step we have 1.5 multiplications of the current precision.
The total work1 amounts to 1.5 ·

∑N
n=0

1
2n which is less than 3 full precision

multiplications. Together with the final multiplication a division costs as
much as 4 multiplications. Another nice feature of the algorithm is that
it is self-correcting. The following numerical example shows the first two
steps of the computation of an inverse starting from a two-digit initial
approximation:

b := 3.1415926 (2)

x0 = 0.31 initial 2 digit approximation for 1/b (3)

b · x0 = 3.141 · 0.3100 = 0.9737 (4)

y0 := 1.000− b · x0 = 0.02629 (5)

x0 · y0 = 0.3100 · 0.02629 = 0.0081(49) (6)

x1 := x0 + x0 · y0 = 0.3100 + 0.0081 = 0.3181 (7)

b · x1 = 3.1415926 · 0.31810000 = 0.9993406 (8)

y1 := 1.0000000− b · x0 = 0.0006594 (9)

x1 · y1 = 0.31810000 · 0.0006594 = 0.0002097(5500) (10)

x2 := x1 + x1 · y1 = 0.31810000 + 0.0002097 = 0.31830975 (11)

1The asymptotics of the multiplication is set to ∼ N (instead of N log(N)) for the estimates made
here, this gives a realistic picture for large N .

17

Root extraction

Computation of square roots can be done using a similar scheme: first
compute 1√

d
then a final multiply with d gives

√
d. Find a starting approx-

imation x0 ≈ 1√
b

then iterate

xk+1 = xk + xk
(1− d x2

k)

2
(1)

until the desired precision is reached. Convergence is again 2nd order: if
xk = 1√

b
(1 + e) then

xk+1 =
1√
b

(
1− 3

2
e2 − 1

2
e3
)

(2)

Similar considerations as above (with squaring considered as expensive as
multiplication2) give an operation count of 4 multiplications for 1√

d
or 5 for√

d.

Note that this algorithm is considerably better than the one where xk+1 :=
1
2(xk + d

xk
) is used as iteration, because no long divisions are involved.

In hfloat, when the achieved precision is below a certain limit a third order
correction is used to assure maximum precision at the last step:

xk+1 = xk + xk
(1− d x2

k)

2
+ xk

3 (1− d x2
k)

2

8
(3)

2Indeed it costs about 2
3 of a multiplication.

18

Inverse n-th root, a general expression

There is a nice general formula that allows to build iterations with arbitrary
order of convergence for a

√
d = d−1/a that involve no long division.

One uses the identity

d−1/a = x (1− (1− xa d))−1/a (1)

= x (1− y)−1/a where y := (1− xa d) (2)

Taylor expansion gives

d−1/a = x
∞∑

k=0

(1/a)k̄ yk (3)

where zk̄ := z(z + 1)(z + 2) . . . (z + k − 1) (and z0̄ = 1). Written out:

d−1/a = x
1

a
√

1− y
= x

(
1 +

y

a
+

(1 + a) y2

2 a2 +
(1 + a)(1 + 2a) y3

6 a3 + (4)

+
(1 + a)(1 + 2a)(1 + 3a) y4

24 a4 + · · ·+
∏n−1

k=1 (1 + k a)

n! an
yn + . . .

)

A n-th order iteration for d−1/a is obtained by truncating the above series
after the (n− 1)-th term:

Φn(x) := x
n−1∑
k=0

(1/a)k̄ yk (5)

xk+1 = Φn(xk) (6)

Convergence is n-th order:

Φn(d
−1/a(1 + e)) = d−1/a(1 + O(en)) (7)

19

Iterations for the inversion of a function

An iteration for a zero r (or root, f(r) = 0) of a function f(x) are them-
selves functions Φ(x) that, when ‘used’ like

xk+1 = Φ(xk) (1)

will make xk converge towards the root: x∞ = r. Convergence is subject
to the condition that x0 was chosen not too far away from r. The function
Φ(x) must (and can) be constructed so that it has an attracting fixed point
where f(x) has a zero:

Φ(r) = r (fixed point) (2)

|Φ′(r)| < 1 (attracting) (3)

This type of iteration is a so-called one-point iteration. There
are also multi-point iterations, these are of the form xk+1 =
Φ(xk, xk−1, . . . , xk−j), j ≥ 1. The best known example is the two-point
iteration

Φ(xk, xk−1) =
xk−1 f(xk)− xk f(xk−1)

f(xk)− f(xk−1)
(4)

We are mainly concerned with one-point iterations in what follows.

Order of convergence: linear vs. super-linear.

The number of correct digits grows exponentially (to the base n) at each
step. Iterations of second order (n = 2) are often called quadratic (or
quadratically convergent), those of third order cubic iterations. Fourth,
fifth and sixth order iterations are called quartic, quintic and sextic and so
on.

For n ≥ 2 the function Φ has a super-attracting fixed point at r: Φ′(r) = 0.
For an iteration of order n one has

Φ′(r) = 0, Φ′′(r) = 0, . . . , Φ(n−1)(r) = 0 (5)

There seems to be no standard term for emphasizing the number of deriva-
tives vanishing at the fixed point: attracting of order n might be appropri-
ate.

20

Schröder’s formula

Let n ≥ 2 then the expression

Sn(x) := x +
n−1∑
t=1

(−1)t f(x)t

t!

(
1

f ′(x)
∂

)t−1
1

f ′(x)
(1)

gives a n−th order iteration for a (simple) root r of f . This is, explicitly,

S = x − f

1! f ′
− f 2

2! f ′3
· f ′′ − f 3

3! f ′5
·
(
3f ′′2 − f ′f ′′′

)
(2)

− f 4

4! f ′7
·
(
15f ′′3 − 10f ′f ′′f ′′′ + f ′2f ′′′′

)
− f 5

5! f ′9
·
(
105f ′′4 − 105f ′f ′′2f ′′′ + 10f ′2f ′′′2 + 15f ′2f ′′f ′′′′ − f ′3f ′′′′′

)
− . . .

The third order iteration obtained upon truncation after the third term on
the right hand side, written as

S3 = x− f

f ′

(
1 +

ff ′′

2f ′2

)
(3)

is sometimes referred to as ‘Householder’s method’. Approximating the

second term on the rhs. as f
f ′

(
1− ff ′′

2f ′2

)−1
gives Halley’s formula.

Cite Schroeder (p.16, translation has a typo in the first formula):

If we denote the general term by

− fa

a!

χa

f ′2a−1 (4a)

the numbers χa can be easily computed by the recurrence

χa+1 = (2a− 1)f ′′χa − f ′∂χa (4b)

.

21

Householder’s formula

For n ≥ 2 the expression

Hn(x) := x + (n− 1)

(
g(x)
f(x)

)(n−2)

(
g(x)
f(x)

)(n−1) (1)

gives a n−th order iteration for a (simple) root r of f . The function g(x)
must be analytic near the root and is set to 1 in what follows.

H2(x) = x− f

f ′
(2a)

H3(x) = x− 2ff ′

2f ′2 − ff ′′
(2b)

H4(x) = x− 3f(ff ′′ − 2f ′2)

6ff ′f ′′ − 6f ′3 − f 2f ′′′
(2c)

H5(x) = x +
4f
(
6f ′3 − 6ff ′f ′′ + f 2f ′′′

)
f 3f ′′′′ − 24f ′4 + 36ff ′2f ′′ − 8f 2f ′f ′′′ − 6f 2f ′′2

(2d)

The second order variant is Newton’s formula, the third order iteration is
called Halley’s formula.

The well-known derivation of Halley’s formula by applying Newton’s for-
mula to f/

√
f ′ can be generalized to produce m-order iterations as follows:

Let F1(x) = f(x) and for m ≥ 2 let

Fm(x) =
Fm−1(x)

F ′
m−1(x)1/m

(3a)

Hm(x) = x− Fm−1(x)

F ′
m−1(x)

(3b)

An alternative recursive formulation:

Q2(x) = 1 (4a)

Qm+1 = f ′(x) Qm(x)− 1

m− 1
f(x) Q′

m(x) (4b)

Hm = x− f(x)
Qm(x)

Qm−1(x)
(4c)

22

The AGM

The AGM (arithmetic geometric mean) plays a central role in the high
precision computation of logarithms and π.

The AGM(a, b) is defined as the limit of the iteration

ak+1 =
ak + bk

2
(1a)

bk+1 =
√

ak bk (1b)

starting with a0 = a and b0 = b. Both of the values converge quadratically
to a common limit. The related quantity ck (used in many AGM based
computations) is defined as

c2
k = a2

k − b2
k (2)

= (ak−1 − ak)
2 (3)

One further defines

R′(k) := 1− 1

2

∞∑
n=0

2nc2
n (4)

corresponding to AGM(1, k), that is, a0 = 1, b0 = k, c0 =
√

1− k2.

It can be shown that

F

(1
2 ,

1
2

1

∣∣∣ 1− b2

a2

)
=

a

AGM(a, b)
(5)

F

(1
2 ,

1
2

1

∣∣∣ x) =
1

AGM(1,
√

1− x)
(6)

An alternative way for the computation for the AGM iteration is

ck+1 =
ak − bk

2
(7a)

ak+1 =
ak + bk

2
(7b)

bk+1 =
√

a2
k+1 − c2

k+1 (7c)

23

The AGM, Schönhage’s variant

Schönhage gives the most economic variant of the AGM, which, apart from
the square root, only needs one squaring per step:

A0 = a2
0 (1a)

B0 = b2
0 (1b)

t0 = 1− (A0 −B0) (1c)

Sk =
Ak + Bk

4
(1d)

bk =
√

Bk [square root] (1e)

ak+1 =
ak + bk

2
(1f)

Ak+1 = a2
k+1 [squaring] (1g)

=

(√
Ak +

√
Bk

2

)2

=
Ak + Bk

4
+

√
Ak Bk

2
(1h)

Bk+1 = 2 (Ak+1 − Sk) = b2
k+1 (1i)

c2
k+1 = Ak+1 −Bk+1 = a2

k+1 − b2
k+1 (1j)

tk+1 = tk − 2k+1 c2
k+1 (1k)

Starting with a0 = A0 = 1, B0 = 1/2 one has π ≈ (2 a2
n)/tn.

24

Superlinear iterations for π

The number of full precision multiplications (FPM) are an indication of the
efficiency of the algorithm. The approximate number of FPMs that were
counted with a computation of π to 4 million decimal digits3 is indicated
like this: #FPM=123.4.

AGM as in [hfloat: src/pi/piagm.cc], #FPM=98.4 (#FPM=149.3 for the
quartic variant):

a0 = 1 (1a)

b0 =
1√
2

(1b)

pn =
2 a2

n+1

1−
∑n

k=0 2k c2
k

→ π (1c)

π − pn =
π2 2n+4 e−π 2n+1

AGM 2(a0, b0)
(1d)

Borwein’s quartic (fourth order) iteration, variant r = 4 as in [hfloat:
src/pi/pi4th.cc], #FPM=170.5:

y0 =
√

2− 1 (2a)

a0 = 6− 4
√

2 (2b)

yk+1 =
1− (1− y4

k)
1/4

1 + (1− y4
k)

1/4 → 0 + (2c)

=
(1− y4

k)
−1/4 − 1

(1− y4
k)
−1/4 + 1

(2d)

ak+1 = ak (1 + yk+1)
4 − 22k+3 yk+1 (1 + yk+1 + y2

k+1) → 1

π
(2e)

= ak ((1 + yk+1)
2)2 − 22k+3 yk+1 ((1 + yk+1)

2 − yk+1) (2f)

0 < ak − π−1 ≤ 16 · 4n 2 e−4n 2 π (2g)

Identities 2d and 2f show how to save operations.

3using radix 10, 000 and 1 million LIMBs.

25

file:~/work/hfloat/src/pi/piagm.cc

file:~/work/hfloat/src/pi/pi4th.cc

More iterations for π
Derived AGM iteration (second order) as in [hfloat: src/pi/pideriv.cc], #FPM=276.2:

x0 =
√

2 (1a)

p0 = 2 +
√

2 (1b)

y1 = 21/4 (1c)

xk+1 =
1

2

(
√

xk +
1
√

xk

)
(k ≥ 0) → 1 + (1d)

yk+1 =
yk
√

xk + 1√
xk

yk + 1
(k ≥ 1) → 1 + (1e)

pk+1 = pk
xk + 1

yk + 1
(k ≥ 1) → π + (1f)

pk − π = 10−2k+1

(1g)

Cubic AGM as in [hfloat: src/pi/picubagm.cc], #FPM=182.7:

a0 = 1 (2a)

b0 =

√
3− 1

2
(2b)

an+1 =
an + 2 bn

3
(2c)

bn+1 =
3

√
bn (a2

n + an bn + b2
n)

3
(2d)

pn =
3 a2

n

1−
∑n

k=0 3k (a2
k − a2

k+1)
(2e)

Quintic (5th order) iteration as in [hfloat: src/pi/pi5th.cc], #FPM=353.2:

s0 = 5(
√

5− 2) (3a)

a0 =
1

2
(3b)

sn+1 =
25

sn(z + x/z + 1)2
→ 1 (3c)

where x =
5

sn

− 1 → 4 (3d)

and y = (x− 1)2 + 7 → 16 (3e)

and z =
(x

2

(
y +

√
y2 − 4x3

))1/5

→ 2 (3f)

an+1 = s2
nan − 5n

(
s2

n − 5

2
+
√

sn (s2
n − 2sn + 5)

)
→ 1

π
(3g)

an −
1

π
< 16 · 5n e−π 5n

(3h)

26

file:~/work/hfloat/src/pi/pideriv.cc

file:~/work/hfloat/src/pi/picubagm.cc

file:~/work/hfloat/src/pi/pi5th.cc

High order = fast?

Nonic (9th order) iteration as in [hfloat: src/pi/pi9th.cc], #FPM=273.7:

a0 =
1

3
(1a)

r0 =

√
3− 1

2
(1b)

s0 = (1− r3
0)

1/3 (1c)

t = 1 + 2 rk (1d)

u =
(
9 rk (1 + rk + r2

k)
)1/3

(1e)

v = t2 + t u + u2 (1f)

m =
27 (1 + sk + s2

k)

v
(1g)

ak+1 = m ak + 32 k−1 (1−m) → 1

π
(1h)

sk+1 =
(1− rk)

3

(t + 2 u) v
(1i)

rk+1 = (1− s3
k)

1/3 (1j)

Summary of operation count vs. algorithms:

#FPM - algorithm name in hfloat

78.424 - pi_agm_sch()

98.424 - pi_agm()

99.510 - pi_agm3(fast variant)

108.241 - pi_agm3(slow variant)

149.324 - pi_agm(quartic)

155.265 - pi_agm3(quartic, fast variant)

164.359 - pi_4th_order(r=16 variant)

169.544 - pi_agm3(quartic, slow variant)

170.519 - pi_4th_order(r=4 variant)

182.710 - pi_cubic_agm()

200.261 - pi_3rd_order()

255.699 - pi_2nd_order()

273.763 - pi_9th_order()

276.221 - pi_derived_agm()

353.202 - pi_5th_order()

27

file:~/work/hfloat/src/pi/pi9th.cc

The binary splitting algorithm

Even if a series is as ‘good’ as Chudnovsky’s famous series for π:

1

π
=

6541681608
√

640320
3

∞∑
k=0

(
13591409

545140134
+ k

) (
(6k)!

(k!)3 (3k)!

(−1)k

6403203k

)
(1a)

=
12

√
640320

3

∞∑
k=0

(−1)k (6k)!

(k!)3 (3k)!

13591409 + k 545140134

(640320)3k
(1b)

. . . the total work is proportional N 2, which makes it impossible to compute
billions of digits from linearly convergent series

There is an alternative way to evaluate a sum
∑N−1

k=0 ak of rational sum-
mands. One looks at the ratios rk of consecutive terms:

rk :=
ak

ak−1
(2)

Set a−1 := 1 to avoid a special case for k = 0. One has

N−1∑
k=0

ak =: r0 (1 + r1 (1 + r2 (1 + r3 (1 + . . . (1 + rN−1) . . .)))) (3)

Now define

rm,n := rm (1 + rm+1 (. . . (1 + rn) . . .)) where m < n (4a)

rm,m := rm (4b)

then

rm,n =
1

am−1

n∑
k=m

ak (5)

and especially

r0,n =
n∑

k=0

ak (6)

With

rm,n = rm + rm · rm+1 + rm · rm+1 · rm+2 + . . . (7a)

· · ·+ rm · · · · · rx + rm · · · · · rx · [rx+1 + · · ·+ rx+1 · · · · · rn]

= rm,x +
x∏

k=m

rk · rx+1,n (7b)

28

The product telescopes, one gets

rm,n = rm,x +
ax

am−1
· rx+1,n (8)

(where m ≤ x < n).

Now we can formulate the binary splitting algorithm by giving a binsplit
function r:

function r(function a, int m, int n)
{

rational ret
if m==n then
{

ret := a(m)/a(m-1)
}
else
{

x := floor((m+n)/2)
ret := r(a,m,x) + a(x) / a(m-1) * r(a,x+1,n)

}
return ret

}

Here a(k) must be a function that returns the k-th term of the series
we wish to compute, in addition one must have a(-1)=1. To compute
arctan(1/10) one would use

function a(k)
{

if k<0 then return 1
else return (-1)^k/((2*k+1)*10^(2*k+1))

}

Calling r(a,0,N) returns
∑N

k=0 ak.

It is instructive to modify the binsplit function so it’s self-documenting.
Simple enhancements will print out the calling tree in the process:

function r(function a, int m, int n, int i)
{

rational ret

indent(i)
print("r(", m, n, ")")
if m==n then
{

ret := a(m)/a(m-1)
}
else
{

x := floor((m+n)/2)
ret := r(a,m,x, i+1) + a(x) / a(m-1) * r(a,x+1,n, i+1)

}

indent(i)
print("^== ", ret)

return ret
}

The additional parameter i is the level of depth in the calling tree and
the function indent(i) shall indent the following print output (that is, it
prints 8·i whitespaces that are not followed by a newline). Using a function
a(k) = 2−(k+1) one gets, upon calling r(a, 0, 6, 0), the following output

29

r(0, 6)
r(0, 3)

r(0, 1)
r(0, 0)
^== 1/2
r(1, 1)
^== 1/2

^== 3/4
r(2, 3)

r(2, 2)
^== 1/2
r(3, 3)
^== 1/2

^== 3/4
^== 15/16
r(4, 6)

r(4, 5)
r(4, 4)
^== 1/2
r(5, 5)
^== 1/2

^== 3/4
r(6, 6)
^== 1/2

^== 7/8
^== 127/128

A fragment like

r(2, 3)
r(2, 2)
^== 1/2
r(3, 3)
^== 1/2

^== 3/4

means: “r(2,3) first called r(2,2) [which returned 1/2], then called r(3,3)
[which returned 1/2]. Then r(2,3) returned 3/4.”

The involved work is only O((log N)2 M(N)), where M(N) is the com-
plexity of one N -bit multiplication. This means that sums of linear but
sufficient convergence are again candidates for high precision computations.

In addition, the ratio r0,N−1 (that is, the sum of the first N terms) can be
reused if one wants to evaluate the sum to a higher precision than before.

If one wants to stare at zillions of decimal digits of the floating point
expansion then one division is also needed which costs not more than 4
multiplications.

Note that this algorithm can trivially be extended (or rather simplified) to
infinite products, e.g. matrix products as Bellard’s

∞∏
k=0

[
2 (k− 1

2) (k+2)
27 (k+ 2

3) (k+ 4
3) 10

0 1

]
=

[
0 π + 6
0 1

]
(9)

30

More details are given in the online draft of my book:

http://www.jjj.de/fxt/#fxtbook

Thanks for your feedback!

Jörg Arndt <arndt@jjj.de>

31

